Centre of Environmental Research Waste Management, Circular Economy and Environmental Security

WP1.A.2 Reducing the amount of hazardous substances in building and construction materials

Environment - Environment for Life 12. – 14. 9. 2022

Project SS02030008 Centre of Environmental Research: Waste Management, Circular Economy and Environmental Security is co-financed with the state support of the Technology Agency of the Czech Republic as part of the Environment for Life Program.

www.tacr.cz

Reduction of the environmental burden of wastes by their utilization in building materials

Prof. Ing. Rostislav Drochytka, CSc. MBA, dr.h.c. Faculty of Civil Engineering / Brno University of Technology

A wide range of selected wastes (BP) for use

Ashes

• Fly ash

Ledvice, Prunéřov, Tušimice, Počerady, Tisová, Chvaletice, Dětmarovice, Mělník, Opatovice, Arcelormittal power plants.

• Slag

Tušimice, Mělník, Oslavany power plants

• FBC ashes

Ledvice, Tisová, Poříčí, Třinec, Hodonín, Kladno power plants

• Bed ashes

Ledvice, Tisová power plants

- Slag from municipal waste incinerator plant SAKO
- END product from municipal waste incinerator SAKO
- **Desulfurization products** SDA of Trmice, energo-gypsum from Opatovice power plant

Hazardous waste

• Solid wastes from waste gas treatment

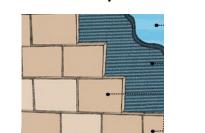
filter ash from the incineration of hazardous waste from the healthcare sector

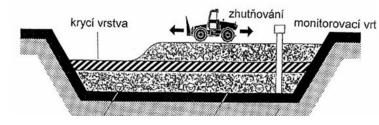
- Ash and slag containing hazardous substances slag from the incineration of hazardous waste from the healthcare sector
- Acid pickling solutions

an acidic solution with a high content of dissolved substances, mainly $\rm Fe^{2+}$

- Sludge from other industrial wastewater treatment methods containing hazardous substances sludge from the production of technical rubber
- Sludge from the biological treatment of industrial wastewater containing hazardous substances
- Sludges from physico-chemical processing containing hazardous substances

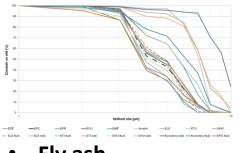
produced as a by-product during the plating process of steel materials

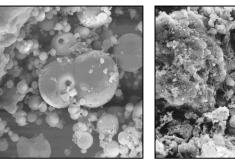

Possibilities of use in classic building materials

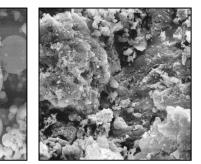

- Replacement of natural aggregate
 - Aggregate for concrete
 - Aggregates for mortars
 - Aggregate for cemented/non-cemented mixtures
 - Filled dams
 - Porous aggregates
- Active ingredients for cement composites
- Raw materials for cement production
- Lime
- Plaster and plaster-based products
- Aerated concrete
- Raw materials for the preparation of ceramics

Selected waste utilization options

- Artificial aggregates (sintered, non-sintered)
 - Mixtures of ash + fuel/binder (+ additives)
- Injection of bulk dams
 - Mixtures of fly ash + clay + binders (+ additives)
- Bonded layers
 - Wastes (+ binders) (+ soil)
- Solidifieds from HW for reclamation and treatment of landfills
 - Sludges (solutions) + solidifying agents (binders + admixtures/additives)
- Polymer materials
 - Polymer base + ash (HW, solids)

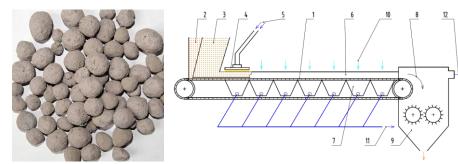





Sec. Sec. 1.

Utilization of fly ash in artificial aggregates

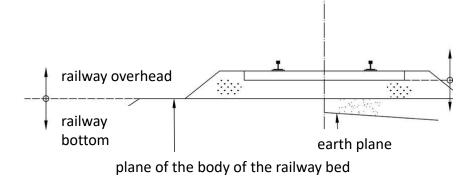
Analyzes of different types of fly ash



- Fly ash
 - high SiO₂,
 - influence on environment mainly heavy metals
 - suitable replacement for cement, fillers, sintered aggregate
- FBC ash
 - Higher content of CaSO₄, CaO etc.,
 - influence on environment mainly především sulfates and solutes
 - vhodná náhrada vápna, kamenivo nespékané
- **Coarse ashes**
 - without embankment/backfill treatment
 - after grinding, the potential for the same use as fine

Verification of fly ash for artificial aggregates

- Fly ash
 - ideal for sintered aggregates
 - can also be unsintered with cement
 - reduction of heavy metals below limits by firing
- FBC ash
 - not suitable for sintered aggregates ٠ (low strength, high absorbency)
 - only for unsintered, it is also possible without binders
 - after curing, sulfates and dissolved substances fall safely below the limits
- **Coarse ashes**
 - unsuitable for aggregates without modification



Utilization of fly ash for dam injection

Bonded layers

- Reducing the environmental burden from waste disposal,
- increasing their resistance and durability,
- reduction of material requirements of construction and reconstruction,
- development and verification of unique technological procedures.

Suitable waste for use (mechanically and ecologically):

- Recycled concrete,
- waste from track bed cleaning,
- slag from the municipal waste incinerator plant,
- FBC ash from burning coal and biomass.

Solidification of waste - landfill reclamation

pH (25°C)	12	
Dissolved substance	3910	
Chlorides [mg/l]	1430	
Sulphates [mg/l]	80	
Dry matter [%]	42,89	
Chrome [mg/kg]	159	
Nickel [mg/kg]	77,8	
Lead [mg/kg]	1870	

Optimal future application of solidificate

- 1. Reinforced backfill material
- 2. Un-reinforced backfill material
- 3. Remediation of ecological burdens

OSTRAVA	pH (2 Diss
	Diss
A	Chlo
	Sulp
1202	Dry r Chro
	Chro
1.12	Nicke
A 1 Part of the	Lead

8,9
480
458
960

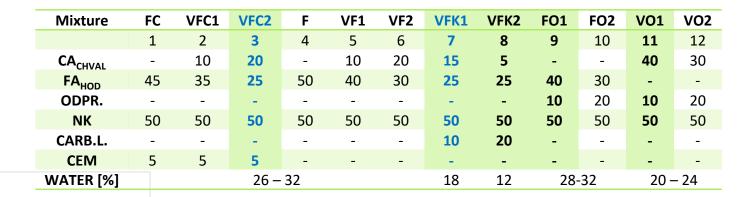
44,11
574
55,2
240

17	15 miles		1		100
P	RO	ST	ΪĚΙ	0	1-

pH (25°C)	9,9	
Dissolved substances (DS	S) [mg/l]	2810
Chlorides [mg/l]		935
Sulphates [mg/l]		221
Dry matter [%]	24,19	
Cadmium [mg/kg]	146	
Chrome [mg/kg]	3990	
Nickel [mg/kg]	30,5	
Lead [mg/kg]	108	
C10 – C40 [mg/kg]	949	

Optimal methodology of solidificate testing

- 1. Demands on envrionmental and health protection
- 2. Physically-mechanical and technology demands


Solidification of waste - landfill reclamation

Used solidification agents (binders and additives)

- Fly ash Chvaletice (CA_{CHVAL})
- FBC ash Hodonín (FA_{HOD})
- Carbide lime

2.5

- Slag from the ladle furnace ArcelorMittal, a.s.
- Cement CEM II/B-M (S-LL) 32,5 R Mokrá

The mixtures met the environmental limits

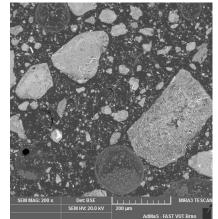
The mixtures also met the strength limits

Selected neutralization sludge	BOHUMÍN	OSTR	AVA
Properties/Mixture designation	VFC2	VFC2	VFK1
Loss on drying [%]	-	8,84	14,28
рН (25°С)	-	9,8	10,0
El. conductivity [mS/m]	496	272	259
Dissolved substances [mg/l]	2890	2670	2530
Compressive strength 28d [MPa]	1,1	1,2	1,1
Volumetric weigth 28d [kg/m ³]	990	1000	980

9 . .

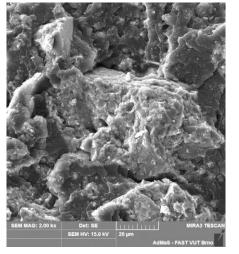
Pevnost v tlaku krychelná- 28d

Utilization of HW in polymer materials

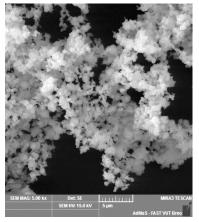

Selected formulas and HW – coating, jointing and rehabilitation materials

- HW Bohumín neutralization sludge, bypass dust from the cement plant
- Polymer matrix Epoxy resin, Polyurethane resin
- Solidifying agents FBC ash, quartz powder

Mixture designation	N1	N2	N3	N4	SP1	SP2	SA1	SA2
Cement dust	-	15	-	15	15		40	-
HW	15	-	15	-	-	15	-	40
Quartz powder	6	6	6	6	10	10	-	-
FBC ash	9	9	9	9	15	15	-	-
PUR	-	-	70	70	-	-	-	-
EP	70	70	-	-	60	60	60	60


Jointing of basalt tiles using SP1 mixture

Incorporation of NK (HW) particles in epoxy matrix SA2



Dried and ground neutralization sludge Bohumín

HW particle embedded in the epoxy matrix of the coating

Bypass dust from the cement plant

Coating System Layer (N3)

Curb repaired with SA1 compound

Examples of execution

Injection of bulk dams of ponds

Soil stabilization

Injection of the bulk dam of the water reservoir

Remediation of the NO landfill using solidifieds

Application of solidified - the base layer of the road